Sözlüğe bu dizini kullanarak gözatın
Özel | A | B | C | Ç | D | E | F | G | H | I | İ | J | K | L | M | N | O | Ö | P | R | S | Ş | T | U | Ü | V | Y | Z | Q | W | X | Tümü
K |
---|
Kartezyen Çarpım | |||
---|---|---|---|
Birinci bileşeni A dan, ikinci bileşeni B den alınarak elde edilen ikililerin kümesidir. | |||
Kavram | |||
---|---|---|---|
Geometrik şekilleri anlatmak için kullanılan sözcük ve terimlere denir. | |||
Kenarortay | |||
---|---|---|---|
Bir üçgenin bir kenarının orta noktasını karşı köşeye birleştiren doğru parçasına kenarortay denir. | |||
Kesen | |||
---|---|---|---|
Çemberi iki noktada kesen doğruya denir. | |||
Kesir sayıları | |||
---|---|---|---|
Eş parçalara bölünmüş bir bütünün bir veya birkaç parçasına bu bütünün kesri, ve bu parçaları gösteren sayılara da kesir sayıları denir. | |||
Kesişim | |||
---|---|---|---|
A ve B kümesinin ortak elemanlarından oluşan kümeye A ile B nin kesişim kümesi denir ve A Ç B ile gösterilir. | |||
Kiriş | |||
---|---|---|---|
Bir çemberin üzerinde alınan iki noktayı birleştiren doğru parçasına kiriş denir. | |||
Klein, (Christian) Felix | ||
---|---|---|
Matematikçi, Düsseldorf, Almanya doğumlu. Bonn Üniversitesi'nde eğitim gördü ve Erlangen'de (1872--5), Münih'te (1875--80), Leipzig'te (1880--6) ve Göttingen'de (1886--1913) profesörlük yaptı. Geometri, özellikle non-Euclidean geometri, fonksiyon teorisi (Bernhard Riemann'ın fikirlerini geliştirdiği alanda) ve eliptik modüler ve otomorfik fonksiyonlarda çalıştı. Erlanger Programm adlı eseri, farklı geometrilerin grup teorisi terimleriyle sınıflandırılabileceğini gösterdi. Ayrıca matematik tarihi, saf ve uygulamalı matematik ile mühendislik arasındaki bağlantıları teşvik etti ve genel matematik eğitimini teşvik etti. | ||
Komşu açılar | |||
---|---|---|---|
Köşeleri ve birer kenarları ortak olan iki açıya komşu açı denir. | |||
Tamamlama Gereklilikleri